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The nonsimilar non-Darcian free-convection flow about a vertical cylinder with imperme- 
able surface embedded in a saturated porous medium, where surface temperature of the 
cylinder varies as x ' ,  a power function of distance from the leading edge, has been studied 
by employing the implicit finite-difference method together with the Newton's quasi- 
linearization technique. In the present investigation, effects of the surface mass flux 
together with the inertial effects on the rate of heat transfer at the surface, on the velocity 
distribution, and on the temperature distribution are shown graphically. 
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I n t r oduc t i on  

Convective motion in a porous medium has attracted 
considerable attention from several authors because of its 
applications in geophysics, oil recovery technique, thermal 
insulation, engineering, and heat storage systems (see Chang 
1978, 1984), and references cited therein). In almost all these 
works, the boundary-layer formulation of Darcy's law and the 
energy equation were used. In the non-Darcian natural 
convection flow, numerous investigations have been conducted 
(Plumb and Huenefeld 1981; Bejan and Poulikakos 1984; Hsu 
and Cheng 1985; Hong and Yamada 1987; Hong et al. 1985; 
Cheng 1981). The inertia effect has been shown to decrease the 
heat transfer when the Rayleigh number is increased (Plumb 
and Huenefeld 1981; Bejan and Poulikakos 1984). The 
buoyancy effect due to a no-slip boundary condition also 
results in a small Nusselt number, but is less pronounced as 
the Rayleigh number is increased (Hsu and Chang 1985; Hong 
and Yamada 1987; Hong et al. 1985; Cheng 1981). 

In recent years, interest has developed in the study of natural 
convection flow in porous media from the surfaces of various 
configurations. Minkowycz and Chang (1981) were the first to 
study the natural convection flow about a vertical heated 
cylinder embedded in a saturated porous medium, considering 
that the surface temperature satisfies the power-law variation 
of the distance measured from the leading edge. With the 
framework of a boundary-layer approximation, exact solutions 
of this problem were obtained for the case in which the surface 
temperature varies linearly with the distance; but for the case 
with nonlinear variations of the surface temperature, 
approximate solutions based on local similarity as well as on 
the local nonsimilarity methods of Sparrow and Yu (1971) and 
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Minkowycz and Sparrow (1974) were obtained. Later, Merkin 
(1986) investigated the problem posed by Minkowycz and 
Chang (1981) using the implicit finite-difference method and the 
series expansion method near the leading edge as well as in 
the downstream, considering the fact that surface tempera- 
ture varies linearly with the distance measured from the 
leading edge. These studies of Minkowycz and Chang (1981) 
and Merkin (1986) are confined to the Darcy flow. Recently, 
non-Darcian natural convection from an isothermal slender 
vertical frustrum of a cone embedded in a saturated medium 
has been studied by Vasantha et al. (1986). On the other hand, 
Ingham (1986) has investigated a similar type of boundary-layer 
flow on axisymmetric and two-dimensional (2-D) bodies of 
arbitrary shape. 

As a continuing effort towards a complete understanding of 
transport phenomena in porous medium, the influence of 
surface mass flux on the free-convection boundary-layer flow 
of Darcian fluid in a saturated porous medium along vertical 
as well as horizontal surfaces has been studied, respectively, by 
Minkowycz and Chang (1981) and Minkowycz et al. (1985). 
Very recently, Lai and Kulacki (1990) have investigated the 
similarity and Kumeri et al. (1990) the nonsimilarity solutions 
for non-Darcian mixed convection flow about a horizontal 
surface with the effect of the influence of surface mass flux in 
a saturated porous medium. However, such extensive efforts 
do not exist for non-Darcian free-convection flows along a 
vertical cylinder subject to a variable wall temperature, in 
which the combined effects of the surface mass flux, variable 
wall temperature, and porous inertia on the heat transfer rate 
must be considered together with the transverse radial 
curvature effects. 

In the present paper, we therefore propose to investigate the 
effect of the surface mass flux on the non-Darcy free-convection 
flow along a heated vertical cylinder embedded in a saturated 
porous medium, where the surface temperature of the cylinder 
varies as x ' ,  a power function of the distance from the leading 
edge. Due to complexities associated with the foregoing various 
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effects on the flow governed by nonsimilarity boundary-layer 
equations of momentum and energy, the implicit finite- 
difference technique together with the Keller box method 
appears to be most efficient for the study of the effects of flow 
parameters in the wide ranges. The numerical values thus 
obtained from the finite-difference calculations are tabulated 
10r the wide ranges of the parameters. 

G o v e r n i n g  e q u a t i o n s  

The governing equations for the non-Darcy steady free- 
convection flow of viscous incompressible fluid about a vertical 
porous cylinder of radius r0 embedded in a saturated porous 
medium with a prescribed axially symmetric wall temperature 
--namely, the equation of continuity, the Forchheimer 
equation with Boussinesq approximation, and the energy 
equation---can be written by using the usual boundary-layer 
approximation (following Plumb and Huenefeld, 1981; 
Minkowyc-z and Cheng, 1981) as 

O 0 
(ru) + =- (rv) = 0 (1) 

Ox vr 

6K* K6ofl 
u + - -  u 2 = ( T  - T~)  (2) 

It It 

aT OT I O (r  OT~ 
u Ox + v Or = ot-r --Or \ &-r )  (3) 

where u and v are the velocity components along the x and r 
directions, respectively, It, & and fl are the viscosity, the density 
and the thermal expansion coefficient of the fluid, respectively; 
= is the thermal diffusivity; a is the acceleration due to gravity; 
T~o is the temperature of the ambient fluid; and T is the 
temperature in the boundary layer. In Equation 2, 

K = D~s and K* = l'75Dp (4) 
150(1 -- s) 2 150(1 -- s) 

where K and K* are the permeability and the inertial 
coefficients, respectively, in terms of characteristic pore or 
particle diameter Dp and the porosity s. Equation 2 approaches 

Darcy's law for very small K*. According to Plumb and 
Huenefeld (1981), the inertial effects are found to be significant 
when 

f f f l K K * ( r w -  T= 
> 0.1 (5) 

V 2 

The appropriate boundary conditions for the present problem 
are 

v = V(x) = ax ~, T = T,  = To~ + A x "  at r = r0" [ 
(6) 

u = 0 ,  T = T o ~ a s r ~  

where V(x) is the surface mass flux and a is positive for blowing 
and negative for withdrawal of fluid. In Equation 4, we have 
assumed that the prescribed temperature is a power function 
of the distance from the leading edge. 

Following Minkowycz and Cheng (1981), we now introduce 
the following group of transformations for the dependent and 
independent variables: 

=-~xRa~/2{ ( r2 )}  ro ; - 1  , 

0 = ~ro Ra~/2F(~ ,  ~/), 

2x 1 = - -  Ra~- 1/2 
re  

0 T . C  

(7) 

where Ra x = Kgfl (T w - T~)x/=v is the modified local Rayleigh 
number and g, is the stream function, defined by 

0g, 0~ 
r u = - -  and r v = - - -  (8) 

Or 0x 

which satisfies the continuity equation (Equation 1). Introdu- 
cing the variable transformations (Equation 7) into Equation 
8, we have 

Ra~ 0F 
x 0r/ (9) 

and 

r v  
~r o Ra t/2 OF OF m)F} 

(1o) 

N o t a t i o n  

F Transformed stream function defined in Equation 7 
fw Blowing and suction parameter 
Gr* Modified local Grashof number, 

Gr* = gflKK*(T.,  - T=)/v 2 
O Acceleration due to gravity 
K Permeability of the porous media 
K* Inertial coefficient defined in Equation 4 
m Exponent introduced in Equation 6 
q Local heat transfer rate 
r Radial coordinate 
re Radial coordinate 
Rax Modified local Rayleigh number, 

Rax = Karl(T., - T=)x/=v 
T Temperature 
T= Ambient constant temperature 
T., Variable wall surface temperature 
u, v Reference velocity components in the x- and r-direction 
V Surface mass flux 
x Axial coordinate 

Greek 

O~ 

fl 

0 
2 
It 
Y 

symbols 

Equivalent thermal diffnsivity of the fluid-saturated 
porous media 
Expansion coefficient of fluid 
Fluid density 
Pscudosimilarity variable defined in Equations 7 
Dimensionless temperature defined in Equations 7 
Exponent introduced in Equation 6 
Fluid viscosity 
Fluid kinematic viscosity 
Stretched streamwi.qe coordinate defined by 
Equations 7 
Stream function 

Subscripts 

oo Quantity at infinity 
w Wall 
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The governing equations then turn into 

F" + 2 Gr*F'F" = 0' (11) 

and 

( 1 2 m )  (1 + ~t/)O" + - -  + ~ FO' -- mF'O 

1-m f ,~O_o,~F t 
- 2 ~ F ~  ~-~_ (12) 

where Gr*(=gf lKK*(Tw-Too) /v  z) is the modified local 
Grashof number expressing the relative importance of the 
inertial effects, and the primes denote the differentiation of the 
respective functions with respect to t/. 

The corresponding boundary conditions become 

F(~,0) = f~, 0(~,0) = 1, 
(13) [ 

F'(~, oo) = 0, 0(~, oo) = 0.) 

where 

2a (g f lKA~ -1/2 (14) 
f * = "  a ( l + m ) \  v= / 

which is valid for ~ = ( m -  1)/2. It is clear that f,, is 
positive for withdrawal and negative for blowing of fluid 
through the surface of the cylinder. 

It can easily be seen that Equations 9 to 12 are local 
nonsimilarity equations. Possible similarity equations exist 
only for the case ~ = 0  for the flow along a vertical 
plate with vectored mass transfer. On the other hand, 
substitutions of G r * =  0 and fw = 0 reduce Equations 9 
to 12 to the problem of Minkowycz and Cheng (1981) 
for the free-convection Darcy flow along a vertical cylinder, 
which they studied by an integral method. Later, the above 
problem for m = 0 was studied by Merkin (1986). In his 
analysis, Merkin investigated the problem by employing the 
perturbation technique for small and large values of the 
curvature parameter ~. He also obtained the solution for a wide 
range of the curvature parameter ~ by the implicit 
finite-difference method. The present problem is composed of 
local similarity or nonsimilarity equations according to 
whether the right-hand sides of Equations 9 and 10 are 
neglected or retained for all values of m other than unity. 
According to Sparrow and Yu (1971), since local nonsimilarity 
solutions are more accurate than local similarity solutions, here 
we look for the local nonsimilarity solutions only. In the next 
section, we investigate the present problem by the use of the 
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implicit finite-difference method together with the Keller box 
method of Keller (1978). 

Once we know the velocity and temperature distributions 
from Equations 11 and 12 that satisfy the boundary conditions 
(Equation 13), we are in a position to know the local rate of 
heat transfer from 

q t x )  = - ~/ ,=~ (15) 

which can be expressed in terms of the following dimensional 
variable: 

q(x) = k,  Aa/z(rgflK~ l/2x(3"- 1)/2(_ 0(~, 0)) (16) 

R e s u l t s  a n d  d i s c u s s i o n  

Equations 9 to 12, together with the boundary conditions 
(Equation 13), have here been integrated by the implicit 
finite-difference scheme together with the Keller box method 
developed by Keller (1978). The numerical integrations start at 

= 0, when F, F', 0, and 0' can be found from Equations 11 
and 12, and then proceed in a step-size manner. The details of 
this method were very recently discussed by Hossain (1992); 
hence, for the sake of brevity they are not presented here. Total 
computations were carried out on a PC Epson 80286 computer, 
considering variable grids in the ~pdirection, defined by 
~Ij = sinhj/a. With a = 25, j is allowed to vary automatically 
so that ~/® belongs to the interval 15 < r/= < 50; this gives rise 
to convergent solutions with desired accuracy for given values 
of the parameters Gr* and fw. In order to assess the accuracy 
of the present method, we have compared our results for heat 
transfer at the surface for Gr* - - f , ,  = 0 with those of 
Minkowycz and Cheng (1981) in Table 1 and have found thorn 
to be in excellent agreement. In Table 2, we again compare the 
present results for 0'(~, 0) with those of Merkin (1986) and 
Minkowycz and Chvng (1981) for Gr* = 0, f,, = 0, and m = 0. 
It can be claimed that the present results are in good agreement 
with both Minkowycz and Cheng (1981) and Merkin (1986). It 
should be noted that Merkin (1986) used series expansions near 
the leading edge and far downstream, whereas Minkowcyz and 
Cheng (1981) employed the local nonsimilarity method. Table 
2 also represents the values of 0'(~, 0) for selected values of the 
modified Grashof number, Gr*, ranging between 0 and 100, 
from which it can be observed that an increase in the value of 

Table I Values of -0'(~, O) for different values of m against ~ with Gr" = 0 and fw = 0 

?,/m 0.0 0.25 0.5 1.0 

0.25 0.4899t 0.48996 0.6729t 0.67238 0.8167t 0.81593 1.046t 1.04528 
0.50 0.5332t 0.53405 0.7175t 0.71660 0.8616t 0.86033 1.091 t 1.09013 
0.75 0.5747t 0.57677 0 . 7 6 0 4 1 "  0.75971 0.9052t 0.90381 1.135t 1.13383 
1.00 0.6149t 0.61808 0.8023t 0.80162 0.9478t 0.94619 1.179t 1.1 7714 
2.00 0.7668t 0.77420 0.9607t 0.96130 1.1100t 1.1 0866 1.345t 1.34317 
3.00 0 . 9 0 8 5 1 "  0.91970 1.1100t" 1.11069 1.2630t 1.26096 1.502t 1.49985 
4.00 1.0440t 1.05877 1.2520t 1.25385 1.4090t 1.40702 1.654t 1.65008 
5.00 1.1 760t 1.19362 1.391 Ot 1.39251 1.5530t 1.54837 1.803rr 1.79535 
6.00 1.3050t 1.32548 1 . 5 2 9 0 1 "  1.52776 1.69601 1.68607 1.952t 1.93669 
7.00 1.43501 1.45516 1.66701 1.66038 1.8390t 1.82086 2.102t 2.07461 
8.00 1.5650t 1.58320 1.8006f 1.79088 1 . 9 8 4 0 1 "  1.95327 2.253t 2.21024 
9.00 1.6960t 1.70996 1.9470t 1.91965 2.1300t 2.08368 2.407t 2.34339 

10.00 1.8300t 1.83570 2.09101 2.04695 2 . 2 8 0 0 1 "  2.21240 2.564t 2.47457 

t These values are from Minkowycz and Cheng (1981 ). 
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Table 2 Values of -2~/20'(~, 0) for different values of Gr* against <~ with m = 0 and fw = 0 

~/Gr* 0.0 1.0 10.0 100.00 

0.00 0.62761" 0.62761" 0.62755 0.51725 0.35446 0.21384 
0.25 0.69281" 0.6933:1: 0.69144 0.58406 0.42357 0.28621 
0.50 0.75421" 0.7653:1: 0.75261 0.64729 0.48820 0.35640 
0.75 0.8127t 0.8170:1: 0.81166 0.70791 0.55019 0.42562 
1.00 0.86961" 0.87591" 0.86909 0.76666 0.61067 0.49394 
2.00 1.08441 1.0965:1: 1.08636 0.98853 0.84351 0.75455 
3.00 1.28481" 1.2996:t 1.29073 1.1 9816 1.06826 0.99769 
4.00 1.47641" 1.4894/ 1.48759 1.40116 1.28621 1,22671 
5.00 1.66311" 1.6683¢ 1.67918 1.59917 1.4971 2 1,44481 
6.00 1.84551" 1.83731: 1.86646 1.79270 1.701 26 1.65393 
7.00 2.02941" 1.9988:1: 2.04989 1.981 96 1.89907 1.85540 
8.00 2.2132~ 2.1520:1: 2.22972 2.16705 2.09103 2.05019 
9.00 2.39851" 2.2980:1: 2.40608 2.34805 2.27761 2.23903 

10.00 2.58801" 2.4373¢ 2.57905 2.52508 2.45919 2.42248 

1" These values are from Minkowycz and Cheng (1981). 
/: These values are from Merkin (1986). 

Gr* leads to a decrease in the rate of heat transfer at the surface 
of the cylinder; and this trend of decrease reduces as the value 
of the parameter ~ goes higher. Finally, solutions are obtained 
for m = 0, 0.25, 0.5, and 1.0, for fw = 0, + 1, and for £ ranging 
between 0.0 and 15.0. 

Figures 1 to 3 represent the value of the rate of heat transfer 
against ~ for selected values of Gr*, f,,, and m. From Figure 1 
it may be observed that the rate of heat transfer decreases as 
Gr* increases at every selected value of m. On the other hand, 
an increase in the value of m leads to a rise in the value of the 
rate of heat transfer while Gr* remains fixed. Figures 2 and 3 
show the effect of the vectored mass transfer on the rate of heat 
transfer at the surface of the cylinder for selected values of the 
parameters Gr* and m. From these figures, it may easily be 
concluded that withdrawal of fluid leads to increase and 
blowing of fluid leads to decrease in the rate of heat transfer 
at each selected value of Gr* and m. 

Now we discuss the effects of the physical parameters Gr*, 

shown in Figures 6 and 7. From Figure 5 it may be observed 
that the velocity profile decreases due to an increase either in 
Gr* or in m for the flow along the impermeable surface of the 
cylinder. It may also be observed from Figure 6 that withdrawal 
of fluid leads to increase and blowing leads to decrease of the 
velocity profiles in the flow field at each value of m. From 

m.=O 

2 .0  - 0 . 0  . . o : ~  
. . . . .  1 . 0  .-; '- ';,;i:G 

1.5-  ' ~ ,  " "  " "  
S '  

,~ L o -  . . .  : . - . . - : :  - ~ . , , - " . , ~ ' ,  .- .~ '~ '  ~.., 

f,,, and m on the velocity and the temperature fields at ~ = 1.0. 0.5 
The representative velocity distribution for the non-Darcy 
flows along the surface of the vertical cylinder in absence as 
well as in the presence of the vectored mass transfer are shown 0'00.b 2.1$ 5.b 7.~ 10'.0 
graphically in Figures 4 and 5, respectively, for selected values 
of Gr* and m. The corresponding temperature distributions are 

Figure 2 Lo( rans ist ~ ,ted 
Gr* 

2 ,5  "I . .  3 . 0  ] I 0 
I 0 , 0 0  .. - 
/ . . . . .  0,=5 , , . . -  - , . ' . :  / " ' " "  -d ;6  . .. 

. A / - - - 0 . 7 5  ... -" .. ,," .",.'" % °  / - - - 1 . 0  .. ,,.- ,.. 

o .  1.s -i . - . : . - - . : a ~  " : u . , , , e r  - ' r  S"  / . ,-- "~. - ' ~ . ~ . ~ ' ~ , - ' ~ . . ; , ~ ' v ~ . .  
/ . " ;  : . : - ; : ; - ~  ~ : " -  ~ J t P ~  • . - . . . . . .  

Jr / . 

r -  "..-~-~..--_.,---_.,~'J %, - o. I .o 
L..~,,,.'-~,~-"~..---~ ~r ~: 

o.%.~ =.~ .~t~ ~.~ 1 o'o °'°o 

Local heat transfer against ~ for selected values of m and 

. . . . . .  10',0 

Figure 1 Local heat transfer against ~ for selected values of m and Figure 3 Local heat transfer against ~ for selected values of m and 
Gr* fw and for Gr ° = 1 
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Figure 7, it may be concluded that, in the absence Of vectored 
mass transfer, increase of Gr* or m leads to decrease of the 
temperatur¢ distribution in the flow field. Finally, from Figure 
7 we may conclude that, at every selected value of m, Gr*, and 
~, the temperature distribution/ncreases when fluid is being 
withdrawn and decreases when fluid is being blown through 
the permeable surface of the cylinder. 

From the present study, we have gained a better insight into 
the phy~cs of the axisymmetric free convective flow in a porous 

1 . 0  ° 

0 . 8  ° 

0.8 

0.4 

0,2 

0,0 

Figure 4 

' 0,0 

t 0 0  - 

, i 

Velocity profiles against r/for selected values of m and 
Gr'at<~=l.0and fw=0 

0,6 ~ . . . . .  1.o 
~ N , , ~  -" 0.0 

- - -  1.0 

o,, \ p ',o 

I \ \ \ ' %  ~ - ,  o.~ 

Figure 5 Velocity profiles against r/for selected values of fw and 
rn fo rGr *=Oa t~= l . 0  

o., l t \  _ _  o:o 

°o.t  
0.2 

~? 
Figure 6 Temperature profiles against r/for selected values of m 
a n d G r ' a t ~ = l . 0 a n d  f w = 0  
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1.o . - ~  . . . . .  1.0 

]E 0.0 
O.B - - - 1,0 

o ' t t \ \  o 
o ,  \ o°: ° 

O.Oo.  
~7 

Figure 7 Temperature profiles against ~ for selected values of fw 
and m for Gr" = 0 at ~ = 1.0 

medium. Whether or not the surface heat flux along a vertical 
circular cylinder increases, as compared with the case of Darcy 
free convection along a vertical flat plate with the same wall 
temperature variation, depends on the two opposing effects, 
namely, the transverse radial curvature effect to increase the 
heat flux and the non-Darcy porous inertia effect to decrease 
the heat flux. Furthermore, the influence of surface mass flux 
may also be quite significant. Thus, a realistic prediction of 
local heat transfer along a vertical circular cylinder can be made 
only when all these complex effects are taken into full 
consideration. 

C o n c l u s i o n s  

Extensive numerical integrations were carried out, using an 
implicit finite-difference technique together with the Keller box 
method, to investigate the problem of non-Darcy free 
convection along a vertical cylinder with surface mass flux. The 
numerical values are furnished for the wide ranges of the 
parameters associated with the porous inertia, transverse radial 
curvature, surface mass flux, and the wall temperature increase. 
Individual and combined effects of these parameters on the 
velocity and temperature fields are elucidated and presented 
graphically. From the present analysis we may conclude that 
(I) the rate of heat transfer decreases due to increase in Gr*, 
(2) withdrawal of fluid leads to an increase and the blowing of 
fluid leads to a decrease in the rate of heat transfer, (3) the 
velocity as well as the temperature profiles reduce due to 
increase in Gr*, and (4) withdrawal or blowing of fluid leads, 
respectively, to increase or decrease in the velocity as well as 
in the temperature fields. 
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